Search results for "Nonlinear regularity"

showing 10 items of 30 documents

Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems

2017

We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…

Sublinear functionMonotonic functionLambda01 natural sciencesOmegaDirichlet distributionsymbols.namesakeFirst eigenvalueP-LaplacianUniqueness0101 mathematicsEigenvalues and eigenvectorsMathematical physicsNonlinear regularityPhysicsApplied Mathematics010102 general mathematicsMathematical analysisVariational methodAnalysiFirst eigenvalue; Generalized picone's identity; Nonlinear maximum principle; Nonlinear regularity; P-Laplacian; Variational methods; Analysis; Applied MathematicsGeneral Medicine010101 applied mathematicsp-LaplaciansymbolsNonlinear maximum principleGeneralized picone's identityAnalysis
researchProduct

Multiple solutions for nonlinear nonhomogeneous resonant coercive problems

2018

We consider a nonlinear, nonhomogeneous Dirichlet problem driven by the sum of a \begin{document}$p$\end{document} -Laplacian ( \begin{document}$2 ) and a Laplacian. The reaction term is a Caratheodory function \begin{document}$f(z,x)$\end{document} which is resonant with respect to the principal eigenvalue of ( \begin{document}$-\Delta_p,\, W^{1,p}_0(\Omega)$\end{document} ). Using variational methods combined with truncation and comparison techniques and Morse theory (critical groups) we prove the existence of three nontrivial smooth solutions all with sign information and under three different conditions concerning the behavior of \begin{document}$f(z,\cdot)$\end{document} near zero. By …

Pure mathematicsTruncation01 natural sciencesResonanceExtremal constant sign solutionConstant sign and nodal solutionDiscrete Mathematics and Combinatorics0101 mathematicsEigenvalues and eigenvectorsCritical groupDiscrete Mathematics and CombinatoricMorse theoryNonlinear regularityPhysicsDirichlet problemMultiple smooth solutionComputer Science::Information RetrievalApplied Mathematics010102 general mathematicsZero (complex analysis)AnalysiFunction (mathematics)010101 applied mathematicsLaplace operatorAnalysisSign (mathematics)
researchProduct

Positive solutions for parametric singular Dirichlet (p,q)-equations

2020

We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.

Minimal solutionSettore MAT/05 - Analisi MatematicaNonlinear maximum principleBifurcation-type theoremSolution multifunctionNonlinear regularity
researchProduct

A singular (p,q)-equation with convection and a locally defined perturbation

2021

We consider a parametric Dirichlet problem driven by the (p,q)-Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.

Positive solutionPseudomonotone operatorSettore MAT/05 - Analisi MatematicaSettore MAT/03 - GeometriaNonlinear maximum principleConvectionNonlinear regularity
researchProduct

Nonlinear Robin problems with unilateral constraints and dependence on the gradient

2018

We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.

Mathematics::Functional Analysisfixed pointSettore MAT/05 - Analisi Matematicalcsh:Mathematicsp-LaplacianMathematics::Analysis of PDEsnonlinear regularityconvection termRobin boundary conditionlcsh:QA1-939maximal monotone mapsubdifferential termElectronic Journal of Differential Equations
researchProduct

Multiple solutions with sign information for a (p,2)-equation with combined nonlinearities

2020

We consider a parametric nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p,2)-equation) and with a reaction which has the competing effects of two distinct nonlinearities. A parametric term which is (p−1)-superlinear (convex term) and a perturbation which is (p−1)-sublinear (concave term). First we show that for all small values of the parameter the problem has at least five nontrivial smooth solutions, all with sign information. Then by strengthening the regularity of the two nonlinearities we produce two more nodal solutions, for a total of seven nontrivial smooth solutions all with sign informations. Our proofs use critical point theory, critical gro…

Settore MAT/05 - Analisi MatematicaConstant sign and nodal solutionFlow invarianceConvex–concave problemStrong comparison principleCritical groupNonlinear regularity
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct

Solutions with sign information for nonlinear Robin problems with no growth restriction on reaction

2019

We consider a parametric nonlinear Robin problem driven by a nonhomogeneous differential operator. The reaction is a Carathéodory function which is only locally defined (that is, the hypotheses concern only its behaviour near zero). The conditions on the reaction are minimal. Using variational tools together with truncation, perturbation and comparison techniques and critical groups, we show that for all small values of the parameter λ > 0, the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal.

nonlinear maximum principleApplied Mathematics010102 general mathematicsFunction (mathematics)Differential operator01 natural sciences010101 applied mathematicsNonlinear systemGrowth restrictionSettore MAT/05 - Analisi Matematicaextremal constant sign solutionsApplied mathematicsnodal solutions0101 mathematicscritical groupsAnalysisNonlinear regularity theorySign (mathematics)Parametric statisticsMathematicsApplicable Analysis
researchProduct

Positive and nodal solutions for nonlinear nonhomogeneous parametric neumann problems

2020

We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter λ > 0. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.

Settore MAT/05 - Analisi MatematicaNonlinear maximum principleStrong comparisonNodal solutionNonlinear nonhomogeneous differential operatorBifurcation-type theoremCritical groupNonlinear regularity theory
researchProduct

Pairs of nontrivial smooth solutions for nonlinear Neumann problems

2020

Abstract We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory, we prove the existence of two nontrivial smooth solutions.

Nonlinear systemStrong resonanceSettore MAT/05 - Analisi MatematicaApplied MathematicsC_c-conditionMathematical analysisNeumann boundary conditionDifferential operatorCritical point (mathematics)Second deformation theoremMathematicsNonlinear regularity
researchProduct